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Abstract—The past decades have witnessed the rapid
development of image and video coding techniques in the era
of big data. However, the signal fidelity-driven coding pipeline
design limits the capability of the existing image/video coding
frameworks to fulfill the needs of both machine and human
vision. In this paper, we come up with a novel face image coding
framework by leveraging both the compressive and the generative
models, to support machine vision and human perception tasks
jointly. Given an input image, the feature analysis is first applied,
and then the generative model is employed to reconstruct image
with compact structure and color features, where sparse edges are
extracted to connect both kinds of vision and a key reference pixel
selection method is proposed to determine the priorities of the
reference color pixels for scalable coding. The compact edge map
serves as the basic layer for machine vision tasks, and the reference
pixels act as an enhanced layer to guarantee signal fidelity for
human vision. By introducing advanced generative models, we
train a decoding network to reconstruct images from compact
structure and color representations, which is flexible to accept
inputs in a scalable way and to control the imagery effect of the
outputs between signal fidelity and visual realism. Experimental
results and comprehensive performance analysis over the face
image dataset demonstrate the superiority of our framework in
both human vision tasks and machine vision tasks, which provide
useful evidence on the emerging standardization efforts on MPEG
VCM (Video Coding for Machine).

Index Terms—Generative compression, image coding, scalable
coding, video coding for machine.

I. INTRODUCTION

GREAT efforts have been made in the evolution of image
processing technologies, to handle the vast amount of vi-

sual information in real-world applications. All these images
need to be encoded before they are transmitted and displayed
by clients, or processed and analyzed by servers. While in the
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past, most of the images are to be displayed or stored for human
examination, in the era of intelligent visual computing, an in-
creasing amount of visual data could at the same time serves hu-
man perception and powers machine vision intelligent systems.
For now, existing methods for visual compression are mainly
designed for either human vision or machine vision, leading to
different visual processing paradigms.

The conventional processing paradigms for images include a
compression scheme to first encode the images into bit-stream
and reconstruct them back to pixels for human vision anal-
ysis. For this purpose, transform-based hybrid coding stan-
dards [1]–[3] have been already widely deployed. In recent
works, image compression methods that utilize machine learn-
ing techniques [4], [5] further improve the rate-distortion per-
formance, achieving the minimal pixel-level distortion under
the bit-rate constraints. However, these methods are shown to
be incapable of efficiently supporting machine vision tasks at
low-bit-rate conditions [6]. The full-resolution image is redun-
dant in information entropy, which inevitably results in high
bit-rates with the image coding methods. Comparatively, ma-
chine vision analysis usually only relies on very compact vi-
sual representations. Besides, existing coding methods focus on
maintaining pixel-wise signal fidelity, which does not guarantee
the preservation of high-level semantics. Thus, it is not desir-
able to utilize the conventional image coding method to support
high-efficient machine vision analysis. The new generation of
coding methods are expected.

Later on, several works have made efforts in addressing
the problem of video analytics on massive data by directly
extracting and compressing features used for machine vision
tasks into a compact form, rather than compressing the whole
high-quality videos. Several typical features are developed, e.g.,
Scale-Invariant Feature Transform (SIFT) [7] and skeleton for
human action recognition [8]. Based on that, techniques to en-
code the compact descriptors for visual search [9] and video
analysis [10] have been further developed and standardized
(ISO/IEC15938-13 and ISO/IEC15938-15). In this way, the pro-
cess of feature extraction, compression and transmission be-
comes light-weighted and less amount of bit-streams are to be
handled. Though these features are compact and highly effective
for machine vision tasks, they completely squeezed out the ap-
pearance information and are designed only for specific tasks.
As no algorithm can guarantee perfect accuracy, some visual
contents may need further human examination in some large-
scale machine vision systems, e.g., Smart Cities, Internet of
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Things (IoT). Few of the existing compression schemes pro-
vide the scalability to collaboratively support high-efficiency
machine analytics and human perception. Besides, for other
real-time joint machine-human visual applications, e.g., telepre-
sense and augmented reality (VR), bit-streams for human vision
reconstruction and machine analysis are transmitted separately,
causing duplication in bit-rate.

Nowadays, the need of a novel compression scheme to col-
laboratively support machine vision and human vision has been
emerging, while in the big data context, it is still an open prob-
lem to support a scalable coding paradigm to satisfy both kinds
of vision. Although the processing paradigms for human vision
and machine vision have apparent differences, they are at the
same time closely connected. Both of them follow the process-
ing paradigm to first extract features from the visual content
and then generate outputs by further analysis on the features.
We are therefore able to explore the possibilities to support ma-
chine and human vision tasks jointly in a flexible way, which is
expected in the new coding paradigm of video coding for ma-
chine (VCM) [11]. To this end, we aim to extract the expressive
compact feature that can jointly facilitate machine vision anal-
ysis and power human vision examination and design the com-
pression framework to encode and decode the compact feature
for various tasks, including visual reconstruction. We provide
an evidence for the possibilities of collaborative coding in the
VCM paradigm.

In this work, we start the exploration of our new coding
paradigm with human face images, as human faces are usually
the salient area in images and lead to a very important research
area of computer vision. It has also been a focus in image/video
coding [12], [13], including the general video object plane tech-
nique [14], [15] in MPEG-4. Our work contributes to facilitating
the emerging video conferencing applications by reducing the
bandwidth to transmit pictures of human faces in high quality,
which has been an important research topic in image and video
communication [16]. In addition, there are rich classification and
detection models to facilitate the evaluation on machine vision
tasks.

In this paper, we focus on the face images and explore to
utilize the edge representation with the corresponding color in-
formation as the compact feature to build a scalable framework
for human-machine collaborative compression. By leveraging
both compressive and generative models, a scalable face image
coding framework is constructed to support machine and human
vision tasks jointly. In this framework, the source image is rep-
resented via a compressive model as edge maps and sparse key
reference pixels. The edges are parameterized into vectors as the
base layer of the coding bits to obtain a compact feature represen-
tation, which only takes a small portion of coding bits. Further-
more, the information in our edge maps is shown to be efficient
for machine vision tasks, e.g. facial landmark detection and gen-
der classification. To better reconstruct the high-quality frame,
reference pixels, sampled in accordance with the edges, can be
transmitted as a second layer to the decoder. With the reference
pixel values, the decoder is able to faithfully reconstruct the im-
age. We adopt a generative model to reconstruct high-quality
images from the sparse edge representations. Experiments on
both machine and human vision show significant improvements

compared with existing methods, which provide useful evidence
on the emerging standardization efforts on MPEG VCM.

Compared with our previous work [17], we further explore
more scalable color representations on the encoding phase and
imagery effect control on the decoding phase. First, our im-
proved single model simultaneously works for both human vi-
sion and machine vision, while our previous model has to be
trained separately for each task. Second, we propose key ref-
erence pixel selection for more scalable color representation,
which not only saves bit-rate for human vision, but also in-
creases the signal fidelity at the same time. Furthermore, even
under the same bit-rate, our improved decoder allows users to
control the imagery effect of the reconstructed image, which
provides greater flexibility for different vision tasks. In addition,
comprehensive experiments are conducted to analyze the image
coding performance of the proposed model, including additional
comparison results for qualitative and quantitative evaluations,
analysis on the color selection and parameter settings of our
proposed techniques, and discussions on the dataset and quality
evaluation issues of VCM. In summary, the contributions of this
work are threefold:
� We propose a face image coding framework that leverages

the compressive model to extract compact representations
of an image and faithfully reconstruct the original image
from the bitstreams with the generative model.

� We design the vision-driven compact representations for
image compression, where the critical image structure and
color information is sparsely encoded. Color information is
further scalably encoded using the proposed key reference
pixel selection method.

� A deep generative network is proposed to effectively re-
cover images from our compact representations in a both
color scalable and imagery effect controllable manner.

� A good balance between human and machine vision is
stricken, where we achieve over 99% and 80% human vi-
sion preferences in terms of realism and fidelity, respec-
tively, and achieve an error drop of 33.43% in the facial
landmark detection and an improvement of 15.5% in gen-
der classification accuracy.

The rest of this paper is organized as follows. In Section II,
we review related works in image coding and image generation.
Section III defines the image compression problem for both ma-
chine and human vision, and gives an overview of the framework
of our method. In Section IV and V, the details of the proposed
vision-driven scalable image coding model and multi-task gen-
erative image decoding model are presented, respectively. We
validate our method by conducting extensive experiments and
thorough analyses in Section VI and discuss the emerging is-
sues of VCM in Section VII. Finally, we conclude our work in
Section VIII.

II. RELATED WORK

A. Feature Based Image Coding

Besides the mainstream transform based codecs [2], [3],
there have been other approaches to explore encoding
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representative image features for reconstruction. In [18], a gen-
erative compression framework is proposed to encode an im-
age into low-bit-rate latent code and exploit recurrent genera-
tive networks for reconstruction. With compressive variational
auto-encoders (VAE) [19], generative networks are also utilized
in [20] to reconstruct images from edges and latent features pro-
duced by neural networks. Though these frameworks encode
compact feature representations of images, they are not shown
to both satisfy the need of human and machine vision. In [21],
a deep-based encoder is designed to produce latent code that
simultaneously serves for machine vision tasks and image re-
construction. In [22], a scalable image compression scheme is
proposed, where a base layer serves feature representation for
machine vision and an enhancement layer serves texture rep-
resentation for human vision. In [23], a bit allocation and rate
control strategy is developed for object detection, where an im-
portance map is created to guide bit allocation to the impor-
tant areas for object detection. In [24], a semantically structured
coding framework is developed to generate semantically struc-
tured bit-stream (SSB). Each part of the bit-stream represents a
certain object and can be directly used for a series of analytic
tasks. There are a series of works [25]–[28] paying attention
to machine-human collaborative intelligence. However, the en-
coded feature representation is non-scalable as the full bit-stream
is needed to support the machine vision tasks, neglecting the
sparsity of the features for machine vision. In this work, we ex-
plore to encode a base layer of features to facilitate machine
vision and an additional layer to improve signal fidelity.

B. Image Generation

Image generation investigates generating new images to ap-
proach the target image distribution. Recent image genera-
tion methods focus on the powerful generative adversarial net-
works (GAN) [29] to learn data distribution using two adversar-
ial networks. By incorporating additional information such as
the text, labels, segmentation maps and edges as inputs, users
are able to control the output with these conditions. For im-
ages as conditional inputs, the problem becomes a specialized
image-to-image translation problem. Isola et al. [30] put for-
ward image-to-image translation and designed a pix2pix net-
work based on UNet and PatchGAN [30] to accomplish this
task. Zhu et al. [31] improved pix2pix by incorporating vari-
ational autoencoder to enhance the diversity of the generated
images.

The advanced GAN has shown impressive capability of data
distribution learning to recover abundant information that well
matches human visions from limited conditions. Such an advan-
tage is also verified by the closely related image inpainting task,
where plausible image content is generated from very sparse
contextual information [32]. Image inpanting targets at recon-
structing the missing regions of an image. Pathak et al. [33] pro-
posed Context Encoder to leverage the training data for semantic
inpainting. In [34], [35], image edge and color are predicted se-
quentially, which shows promising results. It demonstrates the
potential for vision-driven image coding, which forms our re-
search focus in this paper.

Similar to the aforementioned models for image-to-image
translation and inpainting, the proposed model leverages GAN
as decoder but pay more attentions to the image fidelity in ad-
dition to generating plausible image content. Moreover, our
model is able to further accept scalable compact representa-
tion as input and generates images under different imagery ef-
fect to better adapt to various bit-rate constraints and vision
tasks.

III. PROBLEM FORMULATION AND FRAMEWORK

Our work focuses on developing a scalable face image com-
pression framework that meets the need of machine vision with
the very compact feature representation, while being capable of
reconstructing the full images with the additional bit-rates in a
scalable way. Formally, our target is to maximize the multi-task
performance from the perspective of both machine and human
visions, with the resource usage constraint based on a series
of scalable features. Following the paradigm of VCM [11], our
framework can be formulated as follows,

argmin
θ

DM +DH ,

s.t. S(RM ) + S(RM→H) ≤ ST ,

(1)

where M and H denote machine and human visions, DM and
DH are the degradation in performance of machine vision tasks
and human vision tasks, respectively, when the total bit-rate of
the visual representations is constrained by ST . θ is the pa-
rameters of the coding architecture. S(·) calculates the bit-rate
of encoded features. The first term calculates the bit-rate cost
to encode the abstract feature RM that serves machine vision.
The second term corresponds to the cost to encode the features
RM→H for human vision, conditioned on the already encoded
RM in the first part.

To solve the problem in Eq. (1), we develop the compression
framework in Fig. 1, with an encoder and a decoder, to encode
the images into bit-streams and reconstruct them from the bit-
streams to serve tasks of machine and human vision.

In the encoder side, we propose the design to encode I
into two layers of compact representations, corresponding to
RM and RM→H in Eq. (1), respectively, where the bit-rate
usage of the representations satisfies the constraint. Specifi-
cally, we first extract sparse edges to depict the key structure
information of the input image (Section IV-A) and obtain the
vision-driven compact structure code based on the edge sparsity
(Section IV-B). Then we extract sparse reference pixels through
compressive analysis over the edges and the original im-
ages (Section IV-C) and obtain scalable color code by selecting
the pixels with key color information based on the feedback from
the decoder side (Section IV-D). The structure code serves as a
base layer RM to facilitate machine vision and the color code
serves as a scalable enhanced layer RM→H to improve signal
fidelity to fulfill the real need in both machine vision and human
vision.

In the decoder side, we train a deep neural network as the de-
coder to reconstruct the original image from our compact repre-
sentation (Section V-B), where we tune the decoder to minimize
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Fig. 1. Overview of the proposed human vision and machine vision co-driven face image coding framework.

the degradation in performance of both machine vision tasks and
human vision tasks. As it is hardly tractable to directly conduct
the optimization in Eq. (1), we instead train the generative model
in the decoder to minimize the discrepancy of the original images
and ones generated from the compact representations, with the
loss function to reduce the domain gap as well as the distortion
between the reconstructed images and the ground truths. Com-
pared with existing image codecs which directly minimize the
pixel-level error, the proposed framework can better reduce DM

and DH under the constraints on the bit-rates, for the following
reasons. First, our encoder is designed to extract the key features
that well support machine vision and human vision tasks to gen-
erate the compact representations. So the critical information has
been preserved. Second, our decoder is trained to maximize the
domain consistency and the visual fidelity between the recon-
structed images and the original ones, thus it better facilitates
machine vision analysis and human perception. With the pro-
posed framework, we achieve a better solution to the problem
defined in Eq. (1) than existing methods. In addition, our de-
coder accepts scalable color code and enables users to adjust the
imagery effects between fidelity and realism of the decoded im-
ages, which provides much flexibility to adapt to different vision
tasks (Section V-C).

IV. VISION-DRIVEN SCALABLE FACE IMAGE CODING

A. Sparse Edge Extraction

To build our human vision and machine vision co-driven face
image coding scheme, We would like to find the good represen-
tation that can be scalable and understandable for machines and
humans simultaneously. In this work, we choose the edges as
the basic representation for images. Edges are one of the most
highly abstract and sparse image representations, and it is also
light-weight. It usually contains the vital information needed by
most of the machine vision tasks. Meanwhile, edges efficiently
convey the key structural information of the image, which is also
consistent with the human vision. For example, humans are able
to identify the objects from several lines and even infer fine de-
tails such as the colors and textures. To this end, we are inspired
to build our compact representation using sparse edges. We will

show later that images can be plausibly reconstructed purely
from its edges based on the robust data distribution learned by
GAN.

Specifically, we first extract sparse edges from an input image
I using the structured-forest-based edge detection method [36].
These edges are further binarized with trivial short edges dis-
carded based on the post processing algorithm suggested by
pix2pix [30].

B. Compact Structure Representation Extraction

Edge map is a special sparse kind of images, which con-
tains only binary fixed-width edges. It is not straight-forward
to code such maps into compact bit-streams. Existing works in
feature-based image compression exploit recurrent generative
neural networks [18] or resort to HEVC Screen Content Cod-
ing [20], [37]. However, these methods mainly rely on pixel-level
representations or image partitions for natural images, which do
not make full use of the sparsity of the edges, leading to low
efficiency when coding such binary maps.

In our approach, to fully exploit the sparsity of binary fixed-
width edges, we propose to trace the edges into vector graph-
ics for more effective edge map encoding. Specifically, the line
tracing tool [38] is adopted to translate the binary edge maps
into vectorized representations. We follow the Scalable Vector
Graphics (SVG) syntax to approximate edges by straight lines
and Bézier curves. More specifically, three operation markers
of Move, Line and Curve are used. As illustrated in Fig. 2, let
ps be a starting point in the edge map. Then, operation M(pt)
refers to moving from ps to a target point pt. Operation L(pt)
indicates drawing a straight line from ps to the target point pt
and moving to pt. Operation C(pa, pb, pt) denotes drawing a
cubic Bézier curve from the current point to the target point pt
with the intermediate points pa and pb, and moving to pt. Since
edges are mostly smooth in natural images, we can approximate
them well using the above-mentioned straight lines and curves
with few parameters. In the end, these parameters are quantized
and losslessly compressed into compact bit-streams with Par-
tial Matching (PPM) [39] compression scheme, which further
eliminates redundancy.
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Fig. 2. Illustration of our vectorized structure representation and point sam-
plings for color representation. (a) A vectorized edge map. (b) For straight lines,
two points are selected as the reference, according to the slope α. (c) For Bézier
curves, one inner point is selected.

C. Sparse Reference Pixel Extraction

Based on the edges, we further introduce color representa-
tions to tackle the problem of color ambiguity. Color is another
critical important information for human perception. It consti-
tutes the main characteristics of the spaces circumscribed by
edge lines, which helps maintain visual fidelity. Moreover, as a
basic low-level feature, it can even impact some high-level con-
cepts such as emotions. On the other hand, color information is
optional for some machine vision tasks like facial landmark de-
tection, which suggests potential scalability. Thus, in accordance
with the aforementioned structure representation, we propose to
extract pixel-level sparse color representation to better support
the scalable coding scheme.

To be specific, we sparsely sample pixels near the straight
lines and curves. For a straight line, two reference points p1 and
p2 are sampled near the midpoint based on the slope of the line.
As illustrated in Fig. 2(b), if the line is more close to vertical, i.e.,
α ≥ 45◦, we sample p1 and p2 horizontally, while ifα < 45◦, we
sample vertically. As illustrated in Fig. 2(c), for a Bézier curve
with parameters{ps, pa, pb, pt}, we first extract the contact point
of the curve and the tangent line in parallel with the vector−−→pspt.
As with the straight line, the slope of the tangent line is used
to determine the sampling direction of the point. In addition, to
control the bit-rate, we only sample the point p1 at the inner side
of the curve, which is expected to maintain the most represen-
tative color information in the spaces circumscribed by curve.
The pixel, represented in RGB value, is signaled to the decoder
in order as a second layer to provide more fidelity in color. The
proposed sparse reference pixel extraction has two advantages.
First, the decoder could place the received reference color points
following the same rules that the encoder extracts those points,
based on the edge maps. Thus, no additional bits are needed to
record the positions of the selected pixels. Second, as we will
show later in the experiment, such pixels selected adaptively to
the edge maps are more representative and informative.

D. Scalable Color Representation Extraction

For some high-level color-robust machine vision tasks such
as facial landmark detection and gender classification that do not

Fig. 3. Illustration of the target reference pixel number N and the averaged
SSIM of the corresponding reconstructed images.

strictly rely on accurate color information, or under some cir-
cumstance of strict bit-rate constraint that the full enhanced layer
can not be satisfied, a coding framework that accepts scalable
enhanced layer is expected to further save bit-rate. Furthermore,
the reference pixels extracted in Section IV-C inevitably contain
redundant and noisy color information. Removing those pixels
kills two birds with one stone: saving bit-rate and improving
fidelity simultaneously. To this end, we are motivated to investi-
gate scalable color representation extraction, i.e., estimating the
priorities of the reference pixels and removing a certain amount
of less important or noisy reference pixels to satisfy the bit-rate
requirement.

Our key idea is to determine the priority of pixel removal
based on the feedback from the decoder G. The detail of G will
be given in Section V, which decodes the structure code E and
color code C to the reconstructed image IG. Let P be the full
reference pixel set with |P | pixels obtained in Section IV-C.
N < |P | is the target amount of reference pixels we want to
maintain. First, we enumerate each p ∈ P , remove p from P ,
and reconstruct image based on the subset P/p. Then we find
p′ corresponding to the reconstructed result most similar (SSIM
is utilized to compute the structure similarity) to the original
image as the least important pixel to be removed and update
P as P/p′. The above operations are iterated until a total of
(|P | −N) pixels are removed. Although precise, the algorithm
is inefficient: to estimate the priority of all pixels, we have to
decode (|P |+ 1)|P |/2 times.

To speed up, we propose a heuristic algorithm. Intuitively,
removing a pixel has little effect on the removal of pixels far
away. Therefore, after sorting pixels based on SSIM, we could
roughly remove multiple pixels that are far from each other (dis-
tance greater than parameter r) rather than removing only one
optimal pixel. Number of pixels to be removed is determined by
the current total pixel number: 1/k of the total pixels are to be
removed simultaneously. Meanwhile, we observe that the singal
fidelity becomes more sensitive to the changes of pixels when
there are few pixels remaining. Therefore, we set a threshold
n, under which we still remove one pixel per iteration for ac-
curacy. The proposed key reference pixel selection algorithm is
summarized in Algorithm 1.

Fig. 3 illustrates the decoded results in terms of SSIM given
different target number N in our testing set. For 3000 testing
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Algorithm 1: Key Reference Pixel Selection
Input: Image I , reference pixel set P , structure code E
generator G, target number N , removing ratio k = 8
sparse radius r = 10, min removing number n0 = 10
threshold number n = 40 to keep precise

Output: selected reference pixel set P ∗

1: initialize P ∗ = P
2: while |P ∗| > N do
3: 	 enumerate one reference pixel to remove
4: for all p ∈ P ∗ do
5: generate IG via G based on I , E and P ∗/p
6: compute image quality qp = SSIM(IG, I)
7: 	 sort reference pixels based on qp
8: P̃ = sort(P ∗)
9: if |P ∗| < n then

10: 	 precisely remove a pixel when few pixels remain
11: update P ∗ ← P ∗/P̃ (1)
12: else
13: 	 roughly remove multiple sparse pixels
14: compute Δn = min(max(n0, |P ∗|/k), N − |P ∗|)
15: initialize removed set Pr = ∅

16: for i = 1→ |P̃ | do
17: if |P̃ (i)− p| > r for all p ∈ Pr then
18: update P ∗ ← P ∗/P̃ (i), Pr ← Pr ∪ {P̃ (i)}
19: if |Pr| equals to Δn then
20: break

images, the average number of reference pixels are 224, which
is however not the optimal. By removing less important or noisy
reference pixels until only 122 pixels left, SSIM reaches its peak.
Finally, when N <= 40, SSIM drops rapidly with less color
cues. Therefore, we set n = 40 in our experiment.

To compose the bit-stream that supports scalable parameteri-
zation, we first signal the binary flags in the file header to indi-
cate which reference pixels are used. After that, the compressed
vectorized edges are transmitted, followed by the correspond-
ing RGB values represented in raw binaries. Compared with our
previous work, we require additional 224-bit space for flags,
but save around (224− 122)× 24 = 2448 bits for RGB values,
adding up to about 0.034 bpp (bit per pixel) savings.

V. MULTI-TASK GENERATIVE FACE IMAGE DECODING

A. Image-to-Image Translation Via GAN

In this section, we briefly review the basic conception of GAN
for image-to-image translation, which constitutes our decoder.
Image-to-image translation [30] is first systematically raised by
Isola et al., aiming to transform input images to their closely re-
lated output images, such as grey photos to color photos. In [30],
their mappings are modelled by a generator G : X → Y , where
X are conditional images in the source domain andY are images
in the target domain. For a pair {x, y} ∈ {X,Y }, we want the
generated image G(x) to approach to target y, which is usually
formulated as a reconstruction loss Lr. In addition, GAN in-
troduces a discriminator D to discriminate the generated image

G(x) from the real image y and whether it matches the condition
x. Meanwhile, G tries to confuse D. The two networks compete
with each other, so that the generated result gets closer to the real
images. This adversarial training is formulated as an adversarial
loss La.

In the following, we will give the details of the data and loss
functions to accomplish our image decoding task.

B. Adversarial-Based Image Reconstruction

In the decoder side, as illustrated in Fig. 1, our decoderG aims
to reconstruct an image as close to the original image as possible
based on its compact structure (and color) representation. The
main idea is to leverage GAN to learn robust data distribution,
which maps our sparse representation back to the original im-
age spaces and benefits both human visual quality and machine
visual tasks.

To be specific, we formulate our decoding task as an image-to-
image translation by converting our compact representation back
to the image domain as input. For the structure representation,
it is rendered into a normal bitmap E. Meanwhile, for the color
representation, we render the sparsely sampled pixels as a one-
channel image mask M where sampled pixels are filled with 1
and others with 0. And finally, another three-channel RGB image
C is provided with the color values of the sampled pixels at the
corresponding locations. The remaining unknown pixels are set
to 0. Then, we are able to solve the image-to-image translation,
where x and y in Section V-A are a concatenation of E, M and
C, and the original image I , respectively. It can be also viewed as
a standard machine vision task of image inpainting augmented
with extra edge information.C can be viewed as a masked image
I with unknown regions specified byM , i.e.,C = I �M where
� is the element-wise multiplication operator.

Exploiting the significant progress of image-to-image transla-
tion research, we build our decoder following [30], [40]. The de-
coder, or generatorG, contains fully convolutional layers, where
the low-level information is conveyed to the outputs via skip
connections from shallow layers to deep layers to enforce the
structure and color constraints from the inputs. The discrimi-
nator D follows PatchGAN [30] to discriminate the realism of
local patches. Specifically, G maps the input of E, M and C to
a reconstructed image IG = G(E,M,C) to approach I in both
color, structure and perception senses through a reconstruction
loss:

Lr = E [λ1‖IG − I‖1 + λ2SSIM(IG, I) + perc(IG, I)] , (2)

where the firstL1 term measures the pixel-level discrepancy be-
tween the reconstructed image and I , SSIM [41] emphasizes the
structural similarity, and perceptual loss [40] further enhances
the machine-perceptual quality, weighted by λ1 and λ2, respec-
tively. Perceptual loss is computed as

perc(IG, I) =
∑

i

μi

(‖Φi(IG)− Φi(I)‖22
)
, (3)

where Φi(I) is the feature map of I in the i-th layer of
VGG19 [42] and μi is the layer weight.
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Finally, we use hinge loss [43] as our adversarial objective
function to learn the data distribution:

La = LG + LD, (4)

LG = −E[D(IG, E,M)], (5)

LD = E[ReLU(τ +D(IG, E,M))]

+E[ReLU(τ −D(I, E,M))],
(6)

where τ is a margin parameter.LG andLD are adversarial losses
for G and D, respectively. Here we use channel-wise concate-
nation to feed multiple inputs into G and D.

C. Scalable and Controllable Image Reconstruction

Scalability. In Section IV-D, we proposed a novel key refer-
ence pixel selection algorithm to calculate a scalable enhanced
layer. This section introduces our training scheme to enable our
coding framework to accept such scalable layer to further save
bit-rate. One intuitive solution in our previous work [17] is to
train two separate Gs to reconstruct images with and without
{M,C}, respectively. However, it is storage inefficient and pro-
vides only two extreme choices of full or no color information
without trade-off.

To further enhance the scalability of our model, we propose
a simple yet effective training scheme by randomly discarding
reference pixels to simulate various quantities of color cues.
Specifically, we generate masks m to mask out reference pixels
in M and C. For each data, a patch with random size and loca-
tion is generated and rendered as a one-channel image mask m
where 0 corresponds to the patch region and 1 vice versa. Then
we use the updated M ′ = M �m and C ′ = C �m to train the
network. Beyond that, other settings are the same as our afore-
mentioned reconstruction process in Section V-B. To this end,
our single model could accept scalable enhanced layer and es-
tablish a smooth transition between the two extremes of human
vision and machine vision. An example is given in Fig. 4, where
decoded images without color cues still look realistic. Color cues
further supplement the image information, such as the white ‘B’
in the background.

Controllability. In some image reconstruction tasks such as
image super-resolution [44], the designed loss terms empha-
size different imagery effects. Generally, the reconstruction loss
based on low-level vision similarity creates clean and smooth
images for fidelity, while the adversarial loss based on high-
level vision similarity yields complex and textured images for
realism. Besides human perception, imagery effects also play an
important role in machine vision tasks. For example, the related
problem of cartoon-texture image decomposition [45] has been
raised to extract the textureless image for sake of better shape
analyses. Thus even for the same enhanced layer, it is valuable
to investigate an imagery effect controllable model adaptive to
different tasks.

To further improve the controllability of our model, we pro-
pose to incorporate style-based label control into our gener-
ator. Specifically, inspired by adaptive instance normalization
(AdaIN) [46] to render images with various styles (or imagery

Fig. 4. Illustration of the proposed scalable and controllable image recon-
struction. Scalability: from top to bottom, the number of reference pixels used is
0, 15 and 252, respectively. Controllability: from left to right, the control level
� = 0.0, 0.5, 1.0, respectively. Note that all nine results are generated by one
single model.

effects) in image style transfer [46], image-to-image transla-
tion [47], [48] and image generation domain [49], after each
convolution layers except the first and the last ones, we add
AdaIN layers to control the imagery effects. A control label
� ∈ [0, 1] is introduced, which is mapped to the style parame-
ters for AdaIN via a four-layer multilayer perceptron. During
training, the weight λ2 of SSIM loss is set to λ2 = f(�) with
f(·) a monotonically increasing function. Therefore, a high �
will emphasize the reconstruction loss and force the generator
to produce more clean and smooth images as shown in the right
column of Fig. 4, while users can input a low � to obtain more
realistic images with abundant details and textures as in the left
column of Fig. 4.

VI. EXPERIMENTAL RESULTS

In this section, we present the experimental results of the
proposed method for both the task of human vision and machine
vision. We first evaluate our method with respect to human visual
quality both qualitatively and quantitatively in Section VI-B.
Then we test our method on machine tasks in Section VI-C.
Finally, we perform thorough analyses on the proposed scalable
color representation extraction and key reference pixel selection
in Section VI-D. In addition to the examples included in this
paper, more results can be found in our project website1 and the
supplementary material.

1[Online]. Available: https://williamyang1991.github.io/projects/VCM-
Facev2
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Fig. 5. Visual comparison with JPEG compression. (a) Input image. (b)-(c) Images compressed by JPEG using quality parameter of 4 and 6, respectively. (d)
Our decoded images using the encoded edge representations. (e)(f) Our decoded images using both the encoded edge representation and color representation under
N = 15 and 122, respectively. For each reconstructed image, its bit-rate (bit per pixel, bpp) is shown in the lower left black box.

A. Implementation Details

Dataset. We choose the VGGFace2 [50] dataset for evalua-
tion. We filter the images in VGGFace2 that have small reso-
lution and low quality, and finally use 39 122 images from the
training set to train our reconstruction network and 3000 images
from the testing set for performance evaluation.

Network architecture. Our generatorGutilizes the fully con-
volutional Encoder-ResBlocks-Decoder architecture as in [40].
Specifically, G is made up of four encoding convolution layers,
seven resblocks and four decoding convolution layers. Skip con-
nections [30] are added between the Encoder and the Decoder
to preserve the low-level color information. Each convolutional
layer is followed by AdaIN layer [46] except the first and the
last layer. Meanwhile, the discriminator D follows PatchGAN
architecture as in [30] with seven convolution layers and we add
Spectral Normalization layers [51] for stable and fast training.

Parameter setting and network training. For key refer-
ence pixel selection, we set removing ratio k = 8, sparse radius
r = 10, min removing number n0 = 10, and threshold number
n = 40. To train our network, we set λ1 = 100, and τ = 10. To
compute perceptual loss, we use the conv2_1 and conv3_1 lay-
ers of the VGG19 [52] trained on ImageNet dataset [42] with
μ1 = 1.0 and μ2 = 0.5, respectively. The hyper-parameter λ2 to

determine the signal fidelity is controlled by the input parame-
ter � through λ2 = 1000�3 + 50. Note that we use exponential
function rather than linear function because we found that λ2

has diminishing marginal effects on the generated image. Ex-
ponential function makes the image change more linearly with
respect to �. During training, we first train our model with a
fixed � = 0.0 for 10 epoches. Then we train our model with �
uniformly sampled from [0,1] for another 10 epoches. Finally,
we finetune our model with a fixed � = 0.0 for 1 epoches, which
we found could effectively eliminate the artifacts created by
GAN. For reference pixel discarding, we use all, partial (using
mask m) and no color information with probabilities of 0.6, 0,1
and 0.3, respectively. We report the best result from the results
of � ∈ {0.0, 0.25, 0.5, 0.75, 1.0} in the following experiments.

B. Human Vision: Visual Quality Evaluation

Qualitative evaluations. In Figs. 5-6, we present a visual
comparison of the proposed method with JPEG and WEBP com-
pression under different quality parameters (qp), which are se-
lected to matches the bit-rate of our method for a fair comparison.
Specifically, as summarized in Table I, the bit-rate of JPEG com-
pression with qp = 4 corresponds to that of our compression un-
der N = 15, while qp = 6 corresponds to N = 122 (optimal N
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TABLE I
QUANTITATIVE COMPARISON WITH JPEG AND WEBP ON BOTH HUMAN VISION TASK AND MACHINE VISION TASK. WE SET � = 0.0 FOR COMPUTING

PERCEPTUALH, NME AND MEMORABILITY. WE SET � = 0.25 FOR LPIPS, DISTS, AND FID. WE SET � = 0.5 FOR ACCURACY OF GENDER CLASSIFICATION. WE

SET � = 1.0 FOR COMPUTING SSIM, PSNR, AND PERCEPTUALL. WE INDICATE FOR EACH METRIC WHETHER HIGHER (⇑) OR LOWER (⇓) VALUES ARE MORE

DESIRABLE. BEST SCORES ARE HIGHLIGHTED IN BOLD

Fig. 6. Visual comparison with WEBP compression. (a) Input image. (b)(d)
Images compressed by WEBP using quality parameter of 2 and 8, respectively.
(c)(e) Our decoded images under N = 15 and 122, respectively. For each re-
constructed image, its bit-rate (bit per pixel, bpp) is shown in the lower left black
box. The local regions in the yellow box are enlarged below the input image for
better visual comparison.

in terms of SSIM as illustrated in Fig. 3). It can be observed that
JPEG compression yields distinct block artifacts, which greatly
decrease visual quality. Furthermore, the quantization caused
severe color distortion, making a lot of pink areas appear on the
face in Fig. 5(b). By comparison, our method produces more
natural results. We have also included our reconstructed images
decoded without any color cues for extreme compression, and
our model successfully renders plausible colors on all images.
WEBP [53] is a modern image format that provides both lossless
and lossy compression for images on the web. In Fig. 6, we set
qp = 2 and qp = 8 to match the bit-rate of our results. It can be
seen that our method generates much more vivid details of the
beard, while WEBP produces very blurry images.

Quantitative evaluations. To quantitative evaluate the visual
quality of the proposed method, we compare with JPEG and
WEBP compression in terms of fidelity and realism. The signal
fidelity is measured in terms of SSIM, PSNR, perceptual loss,
LPIPS [54] and DISTS [55]. First, SSIM considers the lumi-
nance, contrast and structure similarities between the decoded

image and the original image. The SSIM results are reported
in Table I and Fig. 7(a). Under similar bit-rates, the proposed
method achieves an improvement of 0.064 and 0.021 on SSIM
over JPEG compression under qp = 4 and qp = 6, respectively.
Compared to our previous work [17] (denoted as ICME), the
scalability enables us to add very limited 15 reference pixels to
bring significant gains. Also, by selecting the most important
122 reference pixels rather than the whole pixels (N =∞), our
method fulfills both higher SSIM and lower bit-rates. PSNR is
based on the mean squared error (MSE) between the decoded im-
age and the original image. Not surprisingly, JPEG compression
are designed in favor of MSE and achieves higher PSNR. The
proposed method suffers from the edge misalignment caused
by edge vectorization. PSNR is very sensitive to such errors.
On the other hand, the advanced WEBP compression surpasses
our method in both SSIM and PSNR for it can better preserve
the low frequency information, whose results are, however, very
blurry in Fig. 6. The discrepancy between SSIM/PSNR and hu-
man eyes suggests the design of robust evaluation metrics for
VCM, which we give a brief discussion in Sec. VII.

Some attempts have been made to design robust metrics such
as perceptual loss, LPIPS [54] and DISTS [55]. Perceptual
loss [40] computes the mean squared error in the VGG fea-
ture spaces, where the VGG network is trained on ImageNet
dataset [42] for natural image classification with 1000 classes.
The diverse classes make VGG features highly generalized, and
perceptual loss is known to better reflect human perception. In
Table I, we report the perceptual loss of shallow conv2_2 layer
(denoted as “perceptualL”) and deep conv5_1 layer (denoted as
“perceptualH”), respectively. Interestingly, different layers give
very different ranks. Shallow layers prefer low-level pixel-wise
similarities while deep layers incline towards high-level percep-
tual similarities. Therefore, our method in favor of high-level
machine vision tasks obtains lower perceptual errors in per-
ceptualH. LPIPS [54] and DISTS [55] are two state-of-the-art
full-reference image quality assessment metrics designed to
match the human perception. It can be clearly seen that the pro-
posed method excels all other comparison methods on LPIPS
and DISTS under similar bit-rates, indicating perceptually bet-
ter image reconstruction.

Meanwhile, we use Fréchet inception distance (FID) [56] to
evaluate the realism of the decoded images. In image generation
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Fig. 7. Illustration of the SSIM, FID and bit-rate of JPEG compression, our previous work [17] and the proposed method.

TABLE II
THE PREFERENCE RATIO ON REALISM AND FIDELITY OF DIFFERENT

METHODS AT DIFFERENT BIT-RATE

domain, FID compares the statistics of generated samples to
real samples, and lower FID corresponds to more realistic and
diversified generated samples. The FID results are reported in
Table I and Fig. 7(b), where the advantages of the proposed
method is more distinct. The annoying block artifacts in JEPG
images and the blurriness in WEBP images drastically harm the
realism. Compared to our previous work [17], under extreme
case where no enhanced layer is used (N = 0), our method has
a little disadvantage. The reason might be that we train separate
networks for N = 0 and N =∞ in [17], which better adapts to
either task, while our improved network has to deal with scalable
inputs. However, in common cases where the enhanced layer is
available, our method is still superior.

To better understand the performance of the compared meth-
ods, we perform user studies. We uniformly sample 25 im-
ages from our testing set for evaluation (their serial numbers
are 60 + 120i, i = 0, 1, . . ., 24). We compare our results under
N = 15 with JPEG compression under qp = 4, as well as our
results under N = 122 with JPEG compression under qp = 6.
Each subject is asked to select one from the two results that
looks the most realistic (realism) and best matches the origi-
nal image (fidelity). A total of 12 subjects participate in this
study and a total of 1200 selections are tallied. The preference
ratio is used as the evaluation metric. It is calculated as the ra-
tio of a method selected in all comparisons with this method.
As shown in Table II, the proposed method uses lower bit-rates
than JPEG compression on these 25 testing images. In general,
user scores well match the perceptualH, LPIPS, DISTS and FID

scores. Similar to FID, the proposed method has a distinct ad-
vantage in decoding realistic images, obtaining the best aver-
age preference ratio of 0.993 and 0.997 under high and low
bit-rates, respectively. In terms of fidelity, the proposed method
mostly outperforms JPEG compression under the similar bit-
rate. The advantage is not as overwhelming as realism. The rea-
son might be that approximating edges into straight lines and
Bézier curves will change subtle facial structures, to which hu-
mans are sensitive. It gives us a direction for future work. Over-
all, the user study quantitatively verifies the superiority of our
method.

C. Machine Vision: Landmark Detection

The machine vision performance of our method is verified on
three high-level tasks: facial landmark detection, gender classi-
fication, and image memorability prediction.

We perform facial landmark detection [57] on the original
VGGFace2 [50] dataset, the reconstructed dataset by JPEG, our
previous work [17] and our method. Detection results on the
original data are served as ground truth. We then calculate the
normalized point-to-point error (NME) [58] between the de-
tection results on the compressed data and the ground truth.
Table I illustrates the averaged NME and the bit-rate of the
compared methods and our method. It can be clearly seen that
our method achieves much fewer errors at the similar bit-rate
compared to JPEG and WEBP compression. Specifically, NME
of our method with few color cues (N = 15) is only 3.042%,
which is 33.43% lower than JPEG under qp = 4 and 1.35%
lower than WEBP under qp = 0.4. Meanwhile, with more color
cues (N = 122), our method achieves merely 2.748% NME,
3.31% lower than JPEG under qp = 6 and 0.68% lower than
WEBP under qp = 3. In addition, we further save 0.034 bpp
compared to our previous work [17]. Another observation is the
stable performance under various bit-rate in Fig. 8(a), indicating
that the facial landmark detection is color-robust and favors our
color-scalable framework. Fig. 9 further shows the cumulative
error distribution, where more than 90% of the images recon-
structed by the proposed method have tiny errors less than 5%,

Authorized licensed use limited to: Peking University. Downloaded on September 26,2021 at 10:58:25 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: TOWARDS CODING FOR HUMAN AND MACHINE VISION: SCALABLE FACE IMAGE CODING 2967

Fig. 8. Illustration of the NME, gender classification accuracy and bit-rate of JPEG compression, our previous work [17] and the proposed method.

Fig. 9. Cumulative error distribution of JPEG compression and the proposed
method on facial landmark detection.

Fig. 10. Visual comparison with JPEG compression on facial landmark de-
tection. The detected landmarks are shown as white circles.

showing great robustness. In Fig. 10, we give an example of land-
mark detection results. It can be clearly observed that the block
artifacts in JPEG compression lead to insufficient distinction be-
tween chin and neck, making the algorithm fail to estimate the

contour of the faces as indicated by the yellow arrows. On the
other hand, the proposed method generates more natural results,
thus facilitating the landmark detection.

We exploit deepface [59] to conduct gender classification on
the original VGGFace2 [50] dataset, the reconstructed dataset
by JPEG, our previous work [17] and our method. We first use
deepface to detect the face in the image and then perform gender
classification over the face region. Original images with no face
detected are discarded. Classification results on the remaining
original images are served as ground truth. The corresponding
reconstructed images with no face detected are directly regarded
as a failure classification. Finally, the classification accuracy on
the testing set is reported in Table I and Fig. 8(b). Our method
achieves much higher accuracy at the similar bit-rate compared
to JPEG compression. Under similar bit-rate, we increase the
classification accuracy by 15.5% and 7.3%, compared to JPEG
compression at qp = 4 and qp = 6, respectively. It can be also
observed that the proposed method is less affected by the bit-rate
limit compared to JPEG compression on this task, i.e., our clas-
sification accuracy drops only a little bit under less color infor-
mation. Our method is inferior at qp = 3 but surpassed WEBP
at qp = 0.4. It implies that our method has more obvious advan-
tages in color-robust machine vision tasks.

Finally, we conduct visual memorability prediction based on
MemNet [60] to estimate whether the reconstructed images are
memorable. Table I suggests that our results with rich facial
details preserved are more memorable than JPEG and WEBP
compressed images.

D. Performance Analysis

In this section, we experimentally analyze the performance
of the proposed sparse reference pixel extraction and scalable
color representation extraction.

Sparse reference pixel extraction. Section IV-C introduces
how we find candidate reference pixels for color information
based on their relative position to the extracted edges. It enables
the decoder to infer their positions as the encoder does, thus
saving the bit-rate to record pixel coordinates. To verify such
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Fig. 11. Compare with reference pixels extracted by uniform sampling. The
x-axis uses a logarithmic axis for better visual comparison.

TABLE III
COMPARE WITH REFERENCE PIXELS EXTRACTED BY UNIFORM SAMPLING ON

SUB TESTING SET AND FULL TESTING SET

pixel selection adaptive to the edge maps provides more repre-
sentative and informative color cues, we conduct a comparative
experiment. For a fair comparison, we choose the uniform ref-
erence pixel sampling, which do not need to record pixel coor-
dinates, either. Specifically, for 256× 256 images, considering
the average number of reference pixels extracted by our method
is 224 ≈ 15× 15 = 225, we uniformly sample 225 pixels with
their coordinates (16i, 16j) where i, j = 1, 2, . . ., 15. Then, a
separate GAN is trained on the new enhanced layer derived from
these pixels to adapt to such extraction strategy. Next, we utilize
the proposed key reference pixel selection algorithm to calcu-
late the priority of the reference pixels extracted by our method
and uniform sampling and plot the changes in SSIM with color
cues gradually reduced in Fig. 11. It can be clearly observed
that after removing redundant pixels, our remaining pixels are
more informative to preserve SSIM, especially when N < 100.
In Table III, we divide 3000 testing images in order into three
subsets, each containing 1000 images and report the SSIM with
and without pixel removal on both full testing set and its sub-
sets. Without pixel removal, uniform sampling and the proposed
extraction method have comparable performance in SSIM and
bit-rate. Clearly, both of two pixel extraction strategies benefit
from redundant pixel removal. However, the optimal number of
reference pixels needed to achieve highest SSIM by our method
is much fewer than that by uniform sampling. Not to mention
that under such condition of fewer bit-rate, our results even have
a slightly higher SSIM. The results come to a conclusion that
our sparse reference pixel extraction based on edge maps can
find more informative and important color cues.

Comparing three subsets and the full testing set in Table III, we
find that the optimal N is quite stable regardless of the diversity
of the images. Therefore, we could expect N = 122 as a default

Fig. 12. Acceleration performance of key reference pixel selection algorithm.

number of reference pixels to work fine for images beyond our
testing set.

Scalable color representation extraction. In Section IV-D,
we proposed a key reference pixel selection algorithm where
a removing ratio parameter k is used to determine how many
pixels to be roughly removed for acceleration. A small k means
more pixels are roughly removed each time, thus speeding up
the algorithm. In Fig. 12, we study how k compromises between
accuracy and running time on 10 uniformly sampled images
(their serial numbers are 150 + 300i, i = 0, 1, . . ., 9) in the test-
ing set. The decoder is tested on a GeForce GTX 1080 Ti GPU.
Our baseline without acceleration requires 362.4 s per image to
estimate all of its reference pixel priorities. By setting k = 16,
the proposed method achieves a speedup of about 10 times. The
acceptable value for k is within [8,16] and the performance will
drop ifk is smaller than 8. In this paper, we set a fixedk = 8, with
average running time of 27.0 s, which occupies the main amount
of computational complexity. In terms of other components in
our framework, the average running time of edge extraction,
edge vectorization, bit-stream generation is about 0.01 s, 0.05 s
and 0.03 s per image. In the decoder side, the network requires
about 0.01 s and 2.44 s per image on GeForce GTX 1080 Ti
GPU and Intel Xeon E5-2650 CPU, respectively. There is still
some acceleration space for future work.

Another parameter, sparse radius r to prevent reference pixels
in a local region are all removed at once, is set to 10 in this paper.
We experimentally find that for r = 0 and r = 10, the optimal
number of reference pixels N are all 122. The corresponding
SSIM without sparse removal requirement is 0.758, which is
slightly lower than 0.759 using r = 10.

VII. DISCUSSION AND FUTURE WORK

Dataset for VCM. In VCM, there is still a lack of multi-task
datasets that support both human vision and machine vision to
evaluate the performance of image coding and feature coding
methods. Specifically, the common image coding datasets are
mainly designed for human vision tasks and lack high-level vi-
sion label; while previous attempts towards VCM focus on fea-
ture coding for machine vision tasks and could not reconstruct
the images. This paper presents the first attempt towards VCM to
support machine vision and human vision simultaneously, and
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Fig. 13. Radar charts visualizing Table I and II. Values have been normalized
to the unit range, and axes inverted so that higher value is always better. The red,
orange and gray regions represent the human vision subjective scores, human
vision objective scores and machine vision scores, respectively.

provides a preliminary and new exploration direction under the
VCM standard, which places higher demands on data. In this
paper, we choose the face dataset for two reasons. First, human
faces have an important research value in image and video cod-
ing. More importantly, human faces have been well studied in
computer vision community, and there are rich related classifica-
tion and detection models that can provide labels for high-level
machine vision tasks. Nevertheless, due to the lack of suitable
datasets, we compromise to use the label predicted from the
original images as the ground truth, which might contain noisy
labels. It is our future research direction to provide a more com-
prehensive dataset with accurate labels on more diversified tasks
such as age estimation, emotion classification, face parsing, and
eye tracking.

Quality evaluation. In addition to multi-task datasets, it is
also an important and challenging unresolved problem to evalu-
ate the performance of image coding and feature coding methods
under the VCM paradigm. In our experimental results, we found
a great discrepancy between the subjective scores of the human
eyes in the user study and the traditional standard evaluation
metrics such as PSNR. Our method obtains lower PSNR but
much higher user preferences compared to JPEG compression.
It shows that some traditional metrics cannot well reflect the
human visual perception, and how to define a fair quality eval-
uation for VCM should be considered. In this paper, we have
conducted a preliminary exploration towards quality evaluation
by combining diversified human vision and machine vision met-
rics. For human vision, we select FID, perceptual loss, LPIPS
and DISTS. User study in terms of realism and fidelity is further
included. For machine vision, we report results on three different
high-level tasks.

However, a large number of scores makes it less intuitive to
evaluate the overall performance of a method. Here we suggest
a potentially fair representation for quality evaluation: the radar
chart. In Fig. 13, we normalize the scores in Table I and II to
the unit range and visualize them in the radar chart. Regions are
colored according to the category of vision tasks. Fig. 13 intu-
itively displays the comprehensive performance of the methods
under multiple tasks in a single figure, where our method gen-
erally surpasses JPEG compression especially in human vision

TABLE IV
PERFORMANCE OF OUR METHOD USING DIFFERENT BACKBONES. WE USE THE

SAME HYPER-PARAMETER SETTINGS AS IN TABLE I

* “bpp1 / bpp2” are our bit-rates using PPM and Brotli backbones, respectively.

Fig. 14. Visual comparison between JPEG, WEBP and our method using
Brotli backbone. The lower left black box shows the corresponding bit-rate.

subjective scores. We believe that such a form will inspire the
design of subsequent quality evaluation for VCM. More details
of the radar chart can be found in the supplementary material.

Advanced submodules. This paper provides a new VCM
framework using some basic modules, and verifies its effective-
ness on the face data. Each of our modules can be replaced with
more advanced ones. For example, the PPM scheme can be re-
placed with more advanced Brotli [61] to losslessly compress
edge vectors. Specifically, we separate each vector in the SVG
descriptions into operation markers (i.e., Move, Line, and Curve)
and the corresponding numerical parameters. We compress the
markers using Huffman coding. We then utilize Brotli [61] to
compress the parameters. The two components are concatenated
to form the edge bit-stream. In Table IV and Fig. 14, we show
visual and quantitative results of our method using the Brotli
backbone. This improvement brings a bit-rate save of 0.056 bpp.
Thus, our method (N ≤ 60) supports extreme compression that
is beyond the capability of JPEG (qp = 1) and WEBP (qp = 0),
which better meets the limited bit-rate requirement of VCM.
Likewise, other submodules such as our GAN-based decoder
can benefit from more advanced backbones, which implies a
huge room for performance improvement.

VIII. CONCLUSION

In this paper, we present a new image coding framework to fa-
cilitate both human vision and machine vision. The input image
is first analyzed and compressed as the compact structure and
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scalable color representations. Leveraging the advanced genera-
tive model in machine vision, we train a network to faithfully re-
construct images from the compact representations in a scalable
and controllable manner. Experimental results demonstrate the
superiority of the proposed method in both human vision tasks
in terms of visual quality and fidelity and machine vision tasks
of facial landmark detection, gender classification and memo-
rability prediction. This paper presents the first attempt towards
VCM with respective to image coding via scalable feature-based
compression.
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